universitätfreiburg

Dezentrale Elektrizitätserzeugung & öffentliche Netze: Wo muss die Politik aktiv werden?

25 Jahre solares bauen

Freiburg
Prof. Dr. Anke Weidlich

27. September 2024

Das Institut für Nachhaltige Technische Systeme INATECH

Universität Freiburg

Prof. Dr. Dr. Oliver Ambacher Leistungselektronik

Prof. Dr.-Ing. Frank Balle
Leistungsultraschall und
Technische
Funktionswerkstoffe

Prof. Dr. Oana Cojocaru-Mirédin Skalenübergreifende Materialcharakterisierung

Prof. Dr. Sonia Dsoke
Elektrochemische
Energieträger und
Speichersysteme

Prof. Dr. Stefan Glunz
Photovoltaische
Energiekonversion

Prof. Dr. Hans-Martin Henning Solare Energiesysteme

Prof. Dr. Stefan Hiermaier Nachhaltige Ingenieursysteme

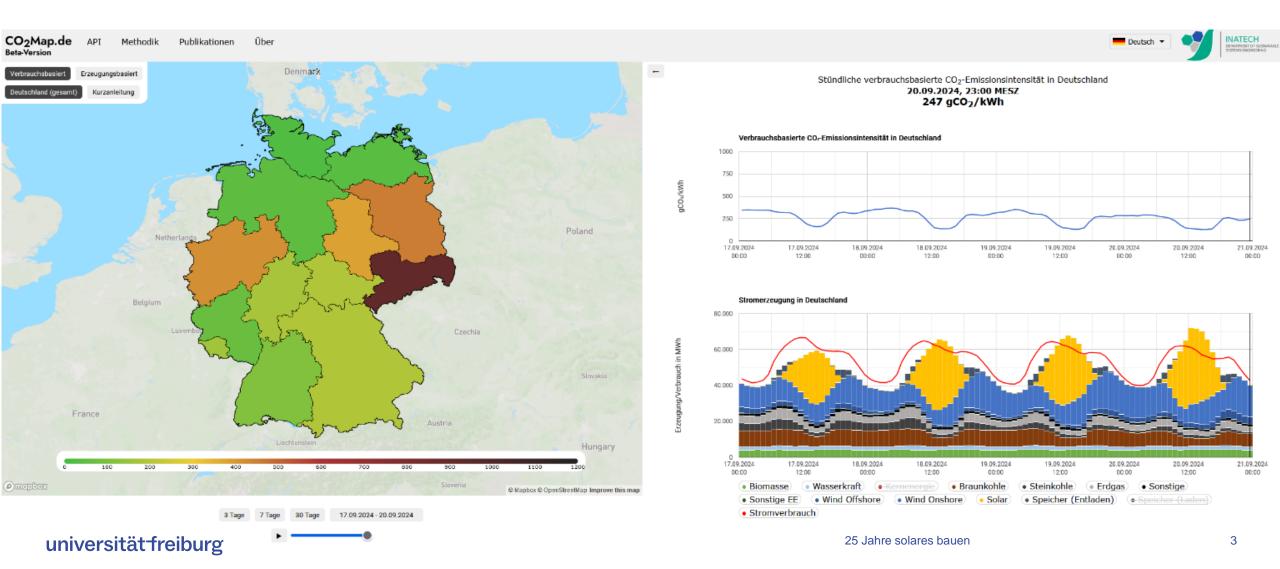
Prof. Dr. Holger NeuhausMaterialsysteme für die
Solarenergienutzung

Prof. Dr. Rüdiger Quay Energieeffiziente Hochfrequenzelektronik

Prof. Dr. Alexander Reiterer Monitoring von Großstrukturen

Prof. Dr.-Ing. Alexander Stolz Resilienz Technischer Systeme

25 Jahre solares bauen


Prof. Dr. Anke Weidlich Technologien der Energieverteilung

Prof. Dr. Daniel Carl Produktionskontrolle

Laufende Aktivität CO2Map

Expertenkommission

Energiewende-Monitoring

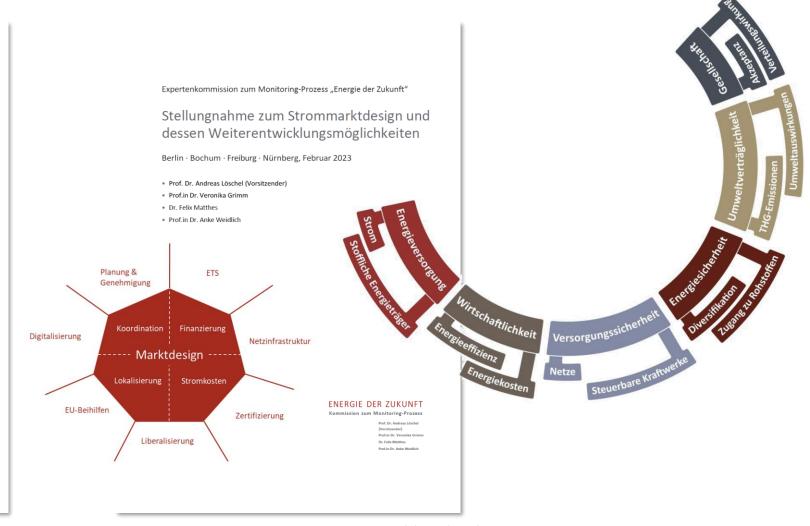
Expertenkommission zum Energiewende-Monitoring

Monitoringbericht

Berlin · Bochum · Freiburg · Nürnberg, Juni 2024

Prof. Dr. Andreas Löschel (Vorsitzender)

Prof. Dr. Veronika Grimm

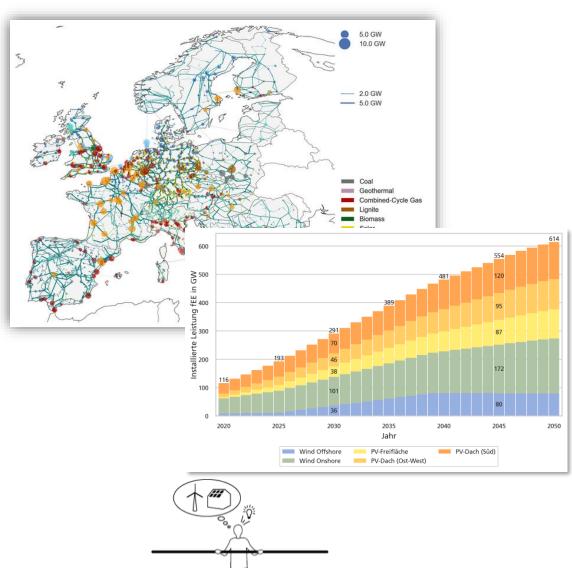

Dr. Felix Matthes

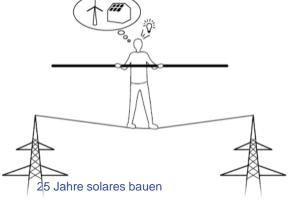
Prof. Dr. Anke Weidlich

Dimension	Unterdimension	Indikator	
Energieversorgung	Strom	Entwicklung der absoluten Stromerzeugung aus erneuer- baren Energien (Kapitel 3.2.1)	0
		Entwicklung der absoluten EE-Stromerzeugungs- kapazitäten (Kapitel 3.2)	
		Entwicklung des Anteils erneuerbarer Energien am Bruttostromverbrauch (Kapitel 3.2.1)	
	Stoffliche Energieträger	Grüner Wasserstoff (Kapitel 4.4)	0
	Energiesektor im Über- blick*	Entwicklung des Anteils der EE am Bruttoendenergie- verbrauch (Kapitel 2.1)	•
		Entwicklung des Endenergieverbrauchs (Kapitel 2.1)	
Versorgungs- sicherheit	Netze	Ausbau der Übertragungsnetze (Kapitel 3.4.2)	
		Digitalisierung (Kapitel 3.5.3)	
		Umfang der erforderlichen Engpassmanagementmaß- nahmen (Kapitel 3.4.1)	•
		SAIDI Strom und SAIDI Gas (Kapitel 6.1.4 und 6.2)	0
	Steuerbare Kraftwerke	Steuerbare Kraftwerke (Kapitel 6.1)	0
		Batteriespeicher (Kapitel 3.5.1)	0
Energiesicherheit	Diversifikation	Herfindahl Index für Erdgas (Kapitel 6.2)	
	Zugang zu Rohstoffen	Nicht-energetische Ressourcen mit Relevanz für die Versorgung (Kapitel 6.3)	•
Preiswürdigkeit/ Wirtschaftlichkeit	Energieeffizienz	Endenergieproduktivität (Kapitel 2.1)	
		Wärmebedarf (Kapitel 5.1)	
		Endenergieeffizienz im privaten Gebäudebereich (Kapi- tel 5.1)	•
	Energiekosten	Anteil der Letztverbraucherausgaben für Elektrizität am Bruttoinlandsprodukt (Kapitel 7.1)	•
		Energiestückkosten der Industrie in Deutschland (Kapitel 7.1)	0
		Durchschnittliche jährliche Energieausgaben privater Haushalte (Kapitel 7.1)	•
		Durchschnittlicher Strompreis privater Haushalte (Kapi- tel 7.1)	•

Expertenkommission zum Energiewende Monitoring

> Prof. Dr. Andreos Löschel (Vorsitzender) Prof. Dr. Veronika Grimm Dr. Felix Matthes Prof. Dr. Anke Weidlich


Herausforderungen Stromnetze Auf einen Blick

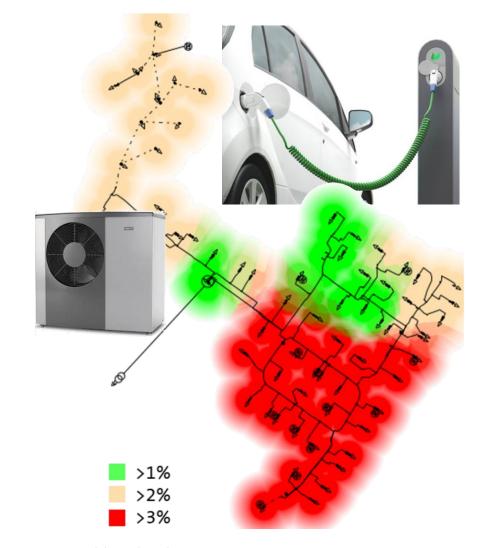

Umfeld

- Zunehmende Mengen erneuerbarer Stromeinspeisung
- Neue Verbraucher durch Elektrifizierung (direkt, indirekt)
- Europäische Vernetzung

Implikationen

- Zeitliche Ungleichgewichte
- Räumliche Ungleichgewichte
- Bedarf an Systemdienstleistungen
 - Momentanreserve zur Frequenzstützung
 - Bereitstellung von Blindleistung
 - Sicherheit, Resilienz: Kurzschlussleistung, Schwarzstartfähigkeit

Fokus

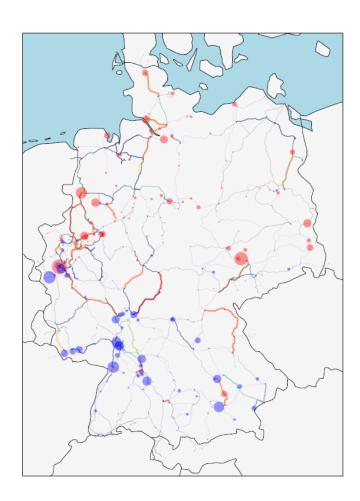

Gleichzeitigkeitseffekte im Verteilnetz

Neue Lasten durch Elektrifizierung

- Deutlich höhere Leistungen in der Niederspannung (Ladestationen, Wärmepumpen)
- Weitere Elektrifizierung in allen Teilen des Verteilnetzes
- Wenig Anreize f
 ür systemdienliches Verhalten
- Hoher Netzausbaubedarf
- Bisher immer noch wenig Digitalisierung
- Neue prinzipielle Steuermöglichkeiten (§ 14 a EnWG)

Hohe Gleichzeitigkeit der Erzeugung bei Photovoltaik

Ebenfalls beschränkte Anreize für Systemdienlichkeit


universität freiburg 25 Jahre solares bauen

Lösungsansätze

Lokalisierungssignale

Reformoptionen:

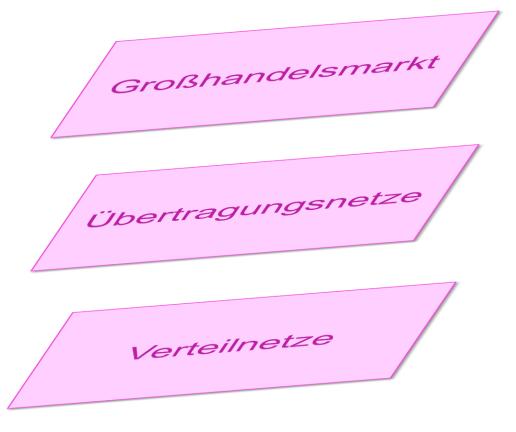
- Nodalpreissystem (theoretisch ideal, praktisch komplex, Marktmachtausübung, möglich, Verteilungswirkung; nur Übertragungsengpässe)
- Gebotszonen-Split (Lokalisierungssignale stark abhängig von Gebotszonenzuschnitt; erfordert optimalen Zuschnitt und regelmäßige Anpassung)
- Marktbasierter Redispatch (Investitionsanreize einerseits, Risiken der Marktmachtausübung und Inc-Dec-Gaming andererseits)
- Regionale G-Komponente Netzentgelt (pro kW bzw. pro kWh; langfristige Setzung für Investitionssicherheit; optimale Entgelte schwierig zu bestimmen)
- Regional differenzierte Förderung für EE-Anlagen

universität freiburg 25 Jahre solares bauen

Lösungsansätze

Koordinierte Anreize für Flexibilitätseinsatz

Marktpreise sind wichtige Flexibilitätsanreize


Netzentgelte müssen Flexibilitätsanreize unterstützen

Aktuelle Hemmnisse

- Fokus auf Gleichmäßigkeit und Vermeidung individueller Peaks
- Leistungspreis (RLM-Kunden) reizt Flexibilitätseinsatz v.a. zur Vermeidung von Peaks an
- Fixer Arbeitspreis (SLP-Kunden) reizt Flexibilitätseinsatz v.a. zur Eigenstrommaximierung an

Reformoption

 Dynamische Netzentgelte, um in Engpasssituationen Flex-Anreize zu geben, sonst Priorität auf Marktsignale

universität freiburg 25 Jahre solares bauen

Schlussfolgerungen

- Stromsystem als "Drehscheibe" der Energiewende
 - → vielfältige Koordinationsaufgaben
- Gleichheit von Erzeugung und Verbrauch jederzeit und auf unterschiedlichen Ebenen erforderlich
- Technische Lösungen der Systemintegration sind vorhanden
- Herkulesaufgabe: Übergreifende Koordination der Märkte, Instrumente und Systeme
- Effiziente Einbindung von Flexibilität wichtig für den Weg zur Klimaneutralität
- Digitalisierung ist zentraler Enabler

Kontakt

Anke Weidlich

Institut für Nachhaltige Technische Systeme INATECH

Tel +49 761 203-54011

Mail anke.weidlich@inatech.uni-freiburg.de

universität freiburg